

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Syntheses and single-crystal structures of CsTh(MoO₄)₂Cl and Na₄Th(WO₄)₄

Geng Bang Jin, L. Soderholm*

Chemical Sciences and Engineering Division, CHM/200 Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, United States

ARTICLE INFO

Article history: Received 30 September 2010 Received in revised form 17 November 2010 Accepted 1 December 2010 Available online 5 December 2010

Keywords: Thorium Molybdate Tungstate Insertion compound Single-crystal structure

ABSTRACT

Colorless crystals of CsTh(MoO₄)₂Cl and Na₄Th(WO₄)₄ have been synthesized at 993 K by the solid-state reactions of ThO₂, MoO₃, CsCl, and ThCl₄ with Na₂WO₄. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO₄)₂Cl is orthorhombic, consisting of two adjacent [Th(MoO₄)₂] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO₄)₂ and reformulated as Th(MoO₄)₂ · CsCl. The Th atom coordinates to seven monodentate MoO₄ tetrahedra and one Cl atom in a highly distorted square antiprism. Na₄Th(WO₄)₄ is constructed from corner-sharing ThO₈ square antiprisms and WO₄ tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO₄)₂Cl, monoclinic, *P*₂/*c*, *Z*=4, *a*=10.170(1) Å, *b*=10.030(1) Å, *c*=9.649(1) Å, *β*=95.671(2)°, *V*=979.5(2) Å³, *R*(*F*)=2.65% for *I* > 2*σ*(*I*); Na₄Th(WO₄)₄, tetragonal, *I*₄/*a*, *Z*=4, *a*=11.437(1) Å, *c*=11.833(2) Å, *V*=1547.7(4) Å³, *R*(*F*)=3.02% for *I* > 2*σ*(*I*).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Actinide molybdate and tungstate compounds have been extensively studied for a few decades [1-20]. Molybdenum is one of the significant fission products that forms during an irradiation of nuclear fuel in a reactor and as such reactions between molybdenum, actinides and other fission products can affect the behavior of the fuel. Actinide molybdates may also be important for the long-term evolution of nuclear waste in a geological repository. From a more fundamental perspective, actinide molybdates and tungstates have shown extremely rich structural chemistries, especially the uranium (VI) phases owing to the diverse coordination geometries of uranyl, molybdenum (VI) and tungsten (VI) ions [13–15]. For example, the approximately linear uranyl cation (UO_2^{2+}) can coordinate with four to six equatorial oxides, while the coordination environment for the Mo⁶⁺ cation varies from fourfold to sixfold. Metal-oxide polyhedra connect via common vertices to form a range of structures, including isolated clusters, chains, sheets and frameworks. Compared to uranyl compounds, fewer structural studies have been conducted on molybdates and tungstates containing the lower-valent actinides Th(IV), U(IV), Np(IV), Pu(IV) and Am(III) [17–20]. Their coordination numbers vary considerably; Th(IV), for example, has ten coordinating water molecules in the homoleptic $[Th(H_2O)_{10}]^{4+}$ ion [21], but the coordination number can vary between six and twelve for oxidic systems [22]. With respect to molybdates or tungstates, lower-valent actinides usually coordinate to eight or nine oxide atoms, and further connect through the polyhedra of molybdates or tungstates to form three-dimensional structures. Most studies on lower-valent actinide molybdates or tungstates were conducted more than two decades ago.

Recently, nuclear fuel cycles using the more abundant thorium have been reconsidered, which is spurring more interest in reexamining and exploring the Th oxometalate system [23-25]. Most thorium molybdate or tungstate studies have focused on quaternary phases containing alkali metals. These systems have been studied by means of liquid-solid phase diagrams, X-ray diffraction and thermal analysis. Numerous compounds have been identified, including $Li_2Th_4(MO_4)_9$ (M=Mo, W) [1,4], $A_2Th(MO_4)_3$ (A=Na, K, Rb, Cs; M=Mo, W) [1,4–10,18], $A_4Th(MO_4)_4$ (A=Na, K, Rb, Cs; M=Mo,W) [1,4–7,9,10,18], A_8 Th(MoO₄)₆ (A=K, Rb) [4–6]. Li₂Th₄(MO₄)₉ is isostructural with $Cu_2Th_4(MoO_4)_9$, which consists of corner-sharing ThO₉ polyhedra and MoO₄ tetrahedra [26]. The series of A_2 Th(MO_4)₃ adopts a scheelite (CaWO₄)-type structure [18,27] with A and Th atoms occupying the eight-coordinate Ca positions in a ordered manner [18,28]. M atoms are surrounded by four oxygen atoms in a distorted tetrahedron. Similarly, A_4 Th(MO_4)₄ (A=Na, K) crystallizes in a scheelite superlattice structure with an ordering between A and Th over the Ca sites and four *M* atoms distributed in five W positions [18,29]. A_4 Th(MO_4)₄ (A=Rb, Cs) has only been characterized by powder X-ray diffraction and the structural details are not known [6,7,10]. The structure of A_8 Th(MoO₄)₆ is related to that of palmierite $(K_2Pb(SO_4)_2)$ [30] with A and Th atoms ordered over the Pb sites [31]. Here, we present the synthesis and structure of a new cesium thorium molybdate compound, CsTh(MoO₄)₂Cl. We also report a different synthetic route for Na₄Th(WO₄)₄ and its single-crystal

^{*} Corresponding author. E-mail address: LS@anl.gov (L. Soderholm).

^{0022-4596/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.12.003

structure. Because of our interest in the heavier actinides, we have purposefully designed a synthetic route that can be used with redoxactive cations.

2. Experiments

2.1. Syntheses

ThO₂ (International Bio-Analytical Industries, Inc.), ThCl₄ (International Bio-Analytical Industries, Inc.), MoO₃ (Cerac, 99.5%), CsCl (Strem Chemicals, 99.999%) and Na2WO4 (MP Biomedicals) were used as received.

Caution!: ²³²Th is an α emitting radioisotope and as such is considered a health risk. Its use requires appropriate infrastructure and personnel trained in the handling of radioactive materials. For both reactions, the reactants were loaded into fused-silica ampoules and then flame-sealed under vacuum. The reaction mixtures were placed in a computer-controlled furnace and heated to 993 K in 48 h, held at this temperature for 120 h, slowly cooled to 693 K in 150 h, and then cooled to 298 K in 6 h. The reaction products were washed with water and dried with acetone. Crystals found in these reactions were characterized by single-crystal X-ray diffraction.

CsTh(MoO₄)₂Cl: 0.015 g (0.057 mmol) of ThO₂ and 0.020 g (0.14 mmol) of MoO₃ were thoroughly ground together before loading into a fused-silica ampoule with 0.080 g (0.48 mmol) of CsCl. The reaction products included a large number of colorless crystals of CsTh(MoO₄)₂Cl and violet-colored prisms of MoO₂ [32]. Both compounds are stable in air. The yield of CsTh(MoO₄)₂Cl is difficult to estimate, due to similar appearance of crystals and broken glass pieces. This will be less of a problem when this synthetic route is applied to the heavier actinides, which are expected to form easily distinguishable colored phases.

 $Na_{4}Th(WO_{4})_{4}$: this compound was obtained from the reaction of 0.020 g (0.053 mmol) of ThCl₄ and 0.090 g (0.31 mmol) of Na₂WO₄. Colorless polyhedral crystals of Na₄Th(WO₄)₄ were the only product identified. The yield of $Na_4Th(WO_4)_4$ is difficult to estimate, due to similar appearance of colorless crystals and broken glass pieces.

2.2. Structure determination

Single-crystal X-ray diffraction data for CsTh(MoO₄)₂Cl and Na₄Th (WO₄)₄ were collected with the use of graphite-monochromatized

Table 1

Crystal data and structure refinements for CsTh(MoO₄)₂Cl and Na₄Th(WO₄)₄^{a,b}.

CsTh(MoO ₄) ₂ Cl	Na ₄ Th(WO ₄) ₄
720.28	1315.40
monoclinic	tetragonal
$P2_1/c$	I41/a
10.170(1)	11.437(1)
10.030(1)	1
9.649(1)	11.833(2)
95.671(2)	1
979.5(2)	1547.7(4)
4.884	5.645
216.10	393.84
0.0265	0.0302
0.0597	0.0706
	CsTh(MoO ₄) ₂ Cl 720.28 monoclinic <i>P</i> 2 ₁ / <i>c</i> 10.170(1) 10.030(1) 9.649(1) 95.671(2) 979.5(2) 4.884 216.10 0.0265 0.0597

^a For both structures, Z=4, $\lambda=0.71073$ Å and T=100(2) K.

^b For Na₄Th(WO₄)₄, from X-ray diffraction powder data in Ref. [1]: a = 11.47 Å and *c*=11.86 Å; in Ref. [4]: *a*=11.44 Å and *c*=11.80 Å.

 ${}^{c} R(F) = \Sigma ||F_{0}| - ||F_{c}||\Sigma|F_{0}| \text{ for } F_{0}^{2} > 2\sigma(F_{0}^{2}).$ ${}^{d} R_{w}(F_{0}^{2}) = \{\Sigma[w(F_{0}^{2} - F_{c}^{2})^{2}]/\Sigma wF_{0}^{4}\}^{y_{2}} \text{ for all data. } w^{-1} = \sigma^{2}(F_{0}^{2}) + (qF_{0}^{2})^{2} \text{ for } F_{0}^{2} \ge 0;$ $w^{-1} = \sigma^2(F_o^2)$ for $F_o^2 < 0$. q = 0.0296 for CsTh(MoO_4)_2Cl, 0.0331 for Na₄Th(WO₄)₄.

MoK α radiation (λ =0.71073 Å) at 100 K on a Bruker APEX2 diffractometer [33]. The crystal-to-detector distance was 5.106 cm. Data were collected by a scan of 0.3° in ω in groups of 600 frames at φ settings of 0°, 90°, 180° and 270°. The exposure time was 20 s/frame. The collection of intensity data as well as cell refinement and data reduction were carried out with the use of the program APEX2 [33]. Absorption corrections, incident beam, and decay corrections were performed with the use of the program SADABS [34]. The structures were solved with the direct-methods program SHELXS and refined with the least-squares program SHELXL [35]. The program STRUC-TURE TIDY [36] was used to standardize the positional parameters. Additional experimental details are given in Table 1 and in the Supporting material.

3. Results

3.1. Syntheses

Assuming that the principle route to alkali metal thorium molybdates or tungstates in a nuclear reactor is the reaction of the fuel with fission products, these phases have been prepared via solid-state reactions of the oxides [1,4-7,9,10]. Some of the reactions required high temperatures and only resulted in powder samples, due to the high melting points of the oxides. Halides such as fluoride are another potential form of thorium fuel [24]. Therefore, we are also interested in their use as starting materials. Halides generally have lower melting points than oxides. For example, the melting points of ThO₂ and ThCl₄ are 3663 and 1038 K, respectively. In the synthesis of $CsTh(MoO_4)_2Cl$, the reactant CsCl, with a melting point of 918 K, was used as the Cs source and Cl is incorporated into the final product. Excess of CsCl served as the flux and excess MoO₃ were added due to the formation of the byproduct MoO₂. Carbon coating inside of the silica ampoule is a possible reducing agent for MoO₃, as most of the coating was gone after the reaction.

The syntheses of Na₄Th(WO₄)₄ have been reported from reactions between Na₂CO₃, WO₃, and ThO₂ [1] or between Na₂WO₄ and $Th(WO_4)_2$ [4]. We used $ThCl_4$ as the Th source for the preparation of $Na_4Th(WO_4)_4$, which can be described by the following reaction:

 $ThCl_4 + 4Na_2WO_4 \rightarrow Na_4Th(WO_4)_4 + 4NaCl$

Similar solid-state metathesis reactions have been used to prepare actinide pnictides and chalcogenides [37]. The driving force of this reaction is the formation of a highly stable NaCl lattice. Excess of Na₂WO₄ (melting point: 971 K) served as the flux.

3.2. Structures

 $CsTh(MoO_4)_2Cl$ crystallizes in the space group $P2_1/c$ with a twodimensional layered structure, as shown in Fig. 1. The structure of CsTh(MoO₄)₂Cl consists of alternating layers of [Th(MoO₄)₂] and [CsCl] in the bc plane. Fig. 2a shows the coordination environment surrounding the Th atom. Each Th atom connects to four $Mo(1)O_4$ tetrahedra, three Mo(2)O₄ tetrahedra, and one Cl atom. The polyhedron of ThO₇Cl forms a highly distorted square antiprism, due to the much longer Th-Cl distance relative to the Th-O distances. Each Mo(1)O₄ tetrahedron share corners with four ThO₇Cl square antiprisms, while each Mo(2)O₄ tetrahedron shares corners with three ThO₇Cl square antiprisms to form a $[Th(MoO_4)_2]$ layer, as shown in Fig. 2b. Each O atom is shared by one ThO₇Cl square antiprism and one MoO₄ tetrahedron, except the terminal O(8) atom from the $Mo(2)O_4$ tetrahedron. Cs⁺ cations are surrounded by five O^{2-} and four Cl^- anions.

Selected bond distances for CsTh(MoO₄)₂Cl are listed in Table 2. Th–O distances range from 2.379(3) to 2.424(3) Å, which are close to those of 2.360(4) to 2.459(4) Å in Th(MoO₄)₂ [38]. The Th–Cl distance, 2.808(1) Å, is comparable to those of 2.718(8) and 2.903(7) Å found for eight-coordinate Th⁴⁺ cations in ThCl₄ [39]. Mo–O distances are in the range 1.711(3)–1.792(3) Å and O–Mo–O angles are between 106.0(2) and 116.3(2)°. Mo(2)–O(8) has the shortest distance of 1.711(3) Å compared to the rest ones, which is expected for a terminal O. Overall they are close to those of 1.743(4)–1.778(4) Å and 106.4(2)–111.8(2)° found in Th(MoO₄)₂ [38]. Cs–O distances are in the range 3.061(3)–3.586(3) Å, and Cs–Cl distances are in the range 3.467(1)–3.652(1) Å. The structure of CsTh(MoO₄)₂Cl includes discrete ThO₇Cl square

Fig. 1. A view of the two-dimensional layered structure of $CsTh(MoO_4)_2CI$ down the *b* axis.

antiprisms and MoO₄ tetrahedra, which results in relative long Th– Th (5.4224(6) Å) and Mo–Mo (3.8853(6) Å) distances. For example, the Th–Th distance between two edge-sharing ThO₈ cubes in ThO₂ [40] is only 3.958 Å. The Th–Mo distance between the corner-sharing ThO₇Cl and MoO₄ polyhedra is 3.7846(6) Å.

The structure of CsTh(MoO₄)₂Cl is closely related to that of orthorhombic Th(MoO₄)₂, which is constructed from similar layers of $[Th(MoO_4)_2]$ (Fig. 3) [38]. A Th atom in $Th(MoO_4)_2$ is surrounded by seven MoO₄ tetrahedra within a single layer of [Th(MoO₄)₂], and it further connects to one MoO₄ tetrahedron from the adjacent layer to complete its coordination environment as a slightly distorted square antiprism. $[Th(MoO_4)_2]$ layers are stitched together by this additional Th–O bonding to form the three-dimensional structure of $Th(MoO_4)_2$. The structure of CsTh(MoO₄)₂Cl can be obtained by inserting an ionic [CsCl] layer and breaking this additional Th-O bonding between those $[Th(MoO_4)_2]$ layers in $Th(MoO_4)_2$. The Th–Th interplanar distance increases from 6.394(2) to 7.4084(9) Å with the insertion of the CsCl layer. Similar salt-inclusion reactions have been reported using the molten-salt methods, which have resulted in a class of hybrid materials of mixed covalent and ionic lattices [41,42]. In this case, the ionic [CsCl] layer can be considered to support the more covalent layer of [Th(MoO₄)₂]. The chemical formula of CsTh(MoO₄)₂Cl can also be expressed as $Th(MoO_4)_2 \cdot CsCl$.

Table 2					
Selected	interatomic	distances	(Å) for	CsTh(Mo	$\mathcal{D}_4)_2$ Cl.

Cs(1) - O(4)	3.586(3)	Th(1) - O(6)	2.379(3)
Cs(1) - O(5)	3.061(3)	Th(1) - O(7)	2.399(3)
Cs(1) - O(6)	3.402(4)	Th(1) - Cl(1)	2.808(1)
Cs(1) - O(7)	3.211(3)	Mo(1) - O(1)	1.761(3)
Cs(1) - O(8)	3.229(4)	Mo(1) - O(2)	1.768(3)
Cs(1) - Cl(1) Cs(1) - Cl(1)	3.467(1) 3.523(1)	MO(1) - O(2) MO(1) - O(4) MO(1) - O(5)	1.759(3) 1.779(3)
$\begin{array}{c} Cs(1) - Cl(1) \\ Cs(1) - Cl(1) \end{array}$	3.594(1)	Mo(2) - O(3)	1.772(3)
	3.652(1)	Mo(2) - O(6)	1.792(3)
Th(1) - O(1) Th(1) - O(2) Th(1) - O(2)	2.424(3) 2.383(3)	Mo(2) - O(7) Mo(2) - O(8) Th(1) = Th(1)	1.788(3) 1.711(3)
Th(1) = O(3) Th(1) = O(4) Th(1) = O(5)	2.392(3) 2.398(3) 2.415(3)	Th(1) - Th(1) Th(1) - Mo(1) Mo(1) - Mo(2)	3.7846(6) 3.8853(6)

Fig. 2. (a) An illustration of the coordination environment for the Th atom in $CsTh(MoO_4)_2Cl$ and (b) a polyhedral presentation of an individual $[Th(MoO_4)_2]$ layer in the *bc* plane.

Fig. 3. (a) Structure of orthorhombic Th(MoO₄)₂ constructed by [Th(MoO₄)₂] layers (circled) with additional Th–O bonding between the layers and (b) A depiction of an individual [Th(MoO₄)₂] layer consists of ThO₈ square antiprisms and MoO₄ tetrahedra.

1 813(5)

Table 3			
Selected interatomic distances (Å) for $Na_4Th(WO_4)_4$.			
Na(1) - O(1)	2.463(6)	W(1) - O(1)	
$N_{a}(1) = O(2)$	2 461(6)	W(1) = O(2)	

114(1) 0(1)	2.105(0)	••(1) 0(1)	1.013(3)
Na(1) - O(2)	2.461(6)	W(1) - O(2)	1.830(5)
Na(1) - O(3)	2.355(6)	W(1) - O(3)	1.746(5)
Na(1) - O(3)	2.467(6)	W(1) - O(4)	1.753(5)
Na(1) - O(4)	2.370(6)	Th(1)-Th(1)	6.4381(6)
Na(1) - O(4)	2.448(6)	Th(1) - W(1)	3.7946(5)
$Th(1) - O(1) \times 4$	2.411(5)	W(1) - W(1)	4.0654(7)
$Th(1) - O(2) \times 4$	2.402(5)		

Na₄Th(WO₄)₄ has been previously characterized by the powder X-ray diffraction [1.4]: however, only the unit cell has been indexed and no structural information has been reported. Given similar cell parameters, Na₄Th(WO₄)₄ has been considered to be isotypic with other $A_4An(MO_4)_4$ (A=Li, Na, K; An=Th, U, Np, Pu; M=Mo, W) compounds, which adopt a scheelite superlattice structure [18,19, 29,43]. Our single-crystal structural results for Na₄Th(WO₄)₄ generally agree with those deduced from the powder studies, but are much more precise (Tables 1 and 3). As shown in Fig. 4, The cell vectors of Na₄Th(WO₄)₄ are related to that of CaWO₄ [27]: $a=2a_s+b_s$, b= $-a_s+2b_s$, $c=c_s$, where s represents scheelite. To be consistent with CaWO₄, Na₄Th(WO₄)₄ can be reformulated to recognize it as the defect scheelite $(Na_{4/5}Th_{1/5})[\Box_{1/5}(WO_4)_{4/5}]$. In the structure of $Na_4Th(WO_4)_4$, 4/5 of the eight-coordinate Ca sites in CaWO₄ are occupied by Na atoms and the rest of 1/5 of Ca sites are occupied by Th atoms. Meanwhile, 1/5 of W sites in CaWO₄ are vacant in the Na₄Th(WO₄)₄ structure. Each Th atom is connected to eight WO₄ tetrahedra in a square antiprism (Fig. 5), while each WO₄ tetrahedron share corners with two ThO₈ square antiprisms to form the three-dimensional framework of $Na_4Th(WO_4)_4$. The space within the channels is filled by Na^+ counter cations. Each Na⁺ cation is only surrounded by six close O neighbors, due to the vacancy of the WO₄ tetrahedra.

Selected bond distances for Na₄Th(WO₄)₄ are listed in Table 3. Th–O distances are 2.411(5) and 2.402(5) Å, which are close to those of 2.42(2) and 2.39(2) Å in Na₄Th(MOO₄)₄ [18]. W–O distances are in the range of 1.746(5) and 1.830(5) Å and O–W–O angles are between 106.6(2) and 112.7(2)°. They are comparable to those of 1.78(1) Å and 107.5 to 113.4° found in CaWO₄ [27]. Na–O distances are in the range 2.355(6)–2.463(6) Å for NaO₆ polyhedron, and there is a much longer contact with a Na–O distance of 3.585(6) Å, which is probably too long to be considered as any interaction. The Th–Th distance between two discrete ThO₈ square antiprisms is 6.4381(6) Å and the W–W distance between the corner-sharing ThO₈ and WO₄ polyhedra is 3.7946(5) Å.

4. Discussion

The structure of CsTh(MoO₄)₂Cl consists of layers of [Th(MoO₄)₂ Cl]⁻ separated by Cs⁺ cations. Significant intercalative ion-exchange reactions have been observed in a number of other layered actinide compounds [44,45] that have shown promising applications for the remediation of nuclear waste [46]. The stable [Th(MoO₄)₂Cl]⁻ structure is another example of a layered material that may serve as a good ion-exchange host for the ¹³⁵Cs⁺ cation, a long-lived nuclear fission product. Based on the reasonable Cs–O and Cs–Cl distances, and representative Cs⁺ thermal parameters, the size of the Cs⁺ cation fits into the space between the [Th(MoO₄)₂Cl]⁻ layers, which should give a preference to the Cs⁺ cations over other smaller alkali metal cations during an ion-exchange reaction. It would be worthwhile to prepare the corresponding heavier actinide phases and study how their electronic and magnetic structures respond to the insertion of a salt layer.

As stated earlier, both structures A_2 Th(MO_4)₃ (A=Na, K, Rb, Cs; M=Mo, W) and $A_4Th(MO_4)_4(A=Na, K; M=Mo, W)$ are related to scheelite, CaWO₄. The formula of A_2 Th(MO_4)₃ can be rewritten as $(A_{2/3}Th_{1/3})(MO_4)$ with A and Th atoms occupying the eight-coordinate Ca positions, while A_4 Th(MO_4)₄ can be reformulated as ($A_{4/5}$ Th_{1/5}) $[\Box_{1/5}(MO_4)_{4/5}]$ with an ordering between A and Th over the Ca sites and 1/5 vacancy of the MO₄ units. Scheelite materials especially those containing Bi have been well known for their catalytic activity in the chemical oxidation reactions [47]. They have been also studied as electrode materials for solid-state fuel cells [48]. Both applications involve the oxygen transport in a bulk material, which is highly depending on the oxygen vacancies and the cations around them. The transport properties of those materials can be tuned by doping different valent metal cations. These potential catalytic and oxygen transport characteristics could have important implications for nuclear fuel applications, in which the complex chemistry will produce a variety of doped and defected structures with an unknown consequence.

5. Conclusions

A new cesium thorium molybdate, CsTh(MoO₄)₂Cl, was synthesized and single crystals of Na₄Th(WO₄)₄ were grown by using chlorides as starting materials. In the reaction for CsTh(MoO₄)₂Cl, the reactant CsCl was incorporated into the final product, which resulted in a hybrid material of mixed covalent and ionic lattices. In the structure of CsTh(MoO₄)₂Cl, the more covalent [Th(MoO₄)₂] layers are separated by ionic [CsCl] layers. A similar [Th(MoO₄)₂] layer has been observed in Th(MoO₄)₂, in which structure the [Th(MoO₄)₂] layers are further

Fig. 4. A comparison between a unit cell of $Na_4Th(WO_4)_4$ (a) and that of $CaWO_4$ (b). WO_4 is shown in tetrahedron. The Th–O bonding, interactions between Na and O in $Na_4Th(WO_4)_4$, and interactions between Ca and O in $CaWO_4$ are omitted for the purpose of clarity.

Fig. 5. (a) A unit cell of $Na_4Th(WO_4)_4$ along the *b* axis and (b) an illustration of the coordination environment for the Th atom.

connected by an additional Th–O bonding. The current structure studies of CsTh(MoO₄)₂Cl and Na₄Th(WO₄)₄ confirm the dominance of eight-coordinate Th in a square antiprismatic geometry in thorium molybdate or tungstate compounds. However, the mono Th–O–Mo/W bond is very flexible with a range of bond angles that has resulted in different networks. As demonstrated in uranyl molybdates, the size of the alkali metal and other metal cations can largely influences the topology and geometry of the uranyl molybdate units. These results imply that rich structural variations of thorium molybdates or tungstates await discovery.

Supporting material

The crystallographic files in CIF format for $CsTh(MoO_4)_2Cl$ and $Na_4Th(WO_4)_4$ have been deposited with FIZ Karlsruhe as CSD nos. 422184 and 422185, respectively. These may be obtained free of charge by contacting FIZ Karlsruhe at +497247808 666 (fax) or crysdata@fiz-karlsruhe.de (e-mail).

Acknowledgments

This work is supported by the U.S. DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02-06CH11357.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2010.12.003.

References

- [1] V.K. Trunov, N.N. Bushuev, Radiokhimiya 11 (1968) 245.
- [2] A. Tabuteau, M. Pages, W. Freundlich, Mater. Res. Bull. 7 (1972) 691.
- [3] M.R. Lee, P. Mahe, C. R. Acad. Sci. Paris, C 279 (1974) 1137.
- [4] J. Thoret, Rev. Chim. Mine'r. 11 (1974) 237.
- 5] N.N. Bushuev, V.K. Trunov, A.R. Gizhinskii, Zh. Neorg. Khim. 20 (1975) 604.
- [6] N.N. Bushuev, V.K. Trunov, Zh. Neorg. Khim. 20 (1975) 1143.

- [7] N.N. Bushuev, V.K. Trunov, Zh. Neorg. Khim. 20 (1975) 1233.
- [8] N.N. Bushuev, V.K. Trunov, Kristallografiya 21 (1976) 69.
- [9] N.N. Bushuev, Zh. Neorg. Khim. 22 (1977) 1912.
- [10] N.N. Bushuev, Zh. Neorg. Khim. 22 (1977) 2215.
- [11] A. Tabuteau, M. Pages, J. Inorg. Nucl. Chem. 42 (1980) 401.
- [12] T.L. Cremers, P.G. Eller, R.A. Penneman, C.C. Herrick, Acta Crystallogr. Sect. C 39 (1983) 1163.
- [13] S.V. Krivovichev, Eur. J. Inorg. Chem. (2010) 2594.
- [14] S. Obbade, C. Dion, E. Bekaert, S. Yagoubi, M. Saadi, F. Abraham, J. Solid State Chem. 172 (2003) 305.
- [15] E.V. Alekseev, S.V. Krivovichev, W. Depmeier, O.I. Siidra, K. Knorr, E.V. Suleimanov, E.V. Chuprunov, Angew. Chem.-Int. Ed. 45 (2006) 7233.
- [16] M. Grigor'ev, A. Fedoseev, N. Budantseva, M. Antipin, Radiokhimiya 47 (2005) 500.
- [17] S. Dash, Z. Singh, N.D. Dahale, R. Prasad, V. Venugopal, J. Alloys Compd. 347 (2002) 301.
- [18] N.D. Dahale, M. Keskar, K.D. Singh Mudher, J. Alloys Compd. 415 (2006) 244.
 [19] N.D. Dahale, M. Keskar, N.K. Kulkarni, K.D.S. Mudher, J. Alloys Compd. 440 (2007) 145.
- [20] M. Keskar, N.D. Dahale, K. Krishnan, J. Nucl. Mater. 393 (2009) 328.
- [21] R.E. Wilson, S. Skanthakumar, P.C. Burns, L. Soderholm, Angew. Chem.-Int. Ed. 46 (2007) 8043.
- [22] M.S. Wickleder, B. Fourest, P.K. Dorhout, in: third ed., in: L.R. Morss, N.M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, vol. 1, Springer, Dordrecht, 2006, pp. 52–160.
- [23] M.S. Kazimi, Am. Sci. 91 (2003) 408.
- [24] R. Hargraves, R. Moir, Am. Sci. 98 (2010) 304.
 [25] H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 635 (2009) 1065.
- [26] S. Launay, M. Quarton, Powder Diffr. 13 (1998) 107.
- [27] Z. Allan, H.T. David, J. Chem. Phys. 40 (1964) 501.
- [28] M. Huyghe, M.R. Lee, M. Quarton, F. Robert, Acta Crystallogr. Sect. C 47 (1991) 244

- [29] M. Huyghe, M.R. Lee, M. Quarton, F. Robert, Acta Crystallogr. Sect. C 47 (1991) 1797.
- [30] C.K. Moller, Acta Chem. Scand. 8 (1954) 81.
- [31] M. Huyghe, M.R. Lee, S. Jaulmes, M. Quarton, Acta Crystallogr. Sect. C 49 (1993) 950.
- [32] B.G. Brandt, A.C. Skapski, Acta Chem. Scand. 21 (1967) 661.
- [33] Bruker, APEX2 Version 2009.5-1 and SAINT Version 7.34a Data Collection and Processing Software, Bruker Analytical X-Ray Instruments, Inc., Madison, WI, USA, 2009.
- [34] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.45a Data Processing Software for the SMART System, Bruker Analytical X-Ray Instruments, Inc., Madison, WI, USA, 2003.
- [35] G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112.
- [36] L.M. Gelato, E. Parthe, J. Appl. Crystallogr. 20 (1987) 139.
- [37] J.C. Fitzmaurice, I.P. Parkin, New J. Chem. 18 (1994) 825.
- [38] T.L. Cremers, P.G. Eller, R.A. Penneman, Acta Crystallogr. Sect. C 39 (1983) 1165.
- [39] K. Mucker, G.S. Smith, Q. Johnson, R.E. Elson, Acta Crystallogr. Sect. B 25 (1969) 2362.
- [40] H.J. Whitfield, D. Roman, A.R. Palmer, J. Inorg. Nucl. Chem. 28 (1966) 2817.
- [41] Q. Huang, S.J. Hwu, X.H. Mo, Angew. Chem.-Int. Ed. 40 (2001) 1690.
- [42] SJ. Hwu, M. Ulutagay-Kartin, J.A. Clayhold, R. Mackay, T.A. Wardojo, C.J. O'Connor, M. Krawiec, J. Am. Chem. Soc. 124 (2002) 12404.
- [43] M. Pages, W. Freundlich, J. Inorg. Nucl. Chem. 34 (1972) 2797.
- [44] P.K. Dorhout, G.L. Rosenthal, A.B. Ellis, Solid State Ionics 32/33 (1989) 50.
- [45] T.Y. Shvareva, P.M. Almond, T.E. Albrecht-Schmitt, J. Solid State Chem. 178 (2005) 499.
- [46] N. Ding, M.G. Kanatzidis, Nat. Chem. 2 (2010) 187.
- [47] Y. Moro-Oka, W. Ueda, in: D.D. Eley, H. Pines, W.O. Haag (Eds.), Advances in Catalysis, vol. 40, Academic, San Diego, USA, 1994, pp. 233–273.
- [48] A.W. Sleight, K. Aykan, D.B. Rogers, J. Solid State Chem. 13 (1975) 231.